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The partition coefficient K of flexible coils distributed between bulk solution and a cubic pore was calculated 
by the Monte-Carlo method on a simple cubic lattice. Self-avoiding walks up to 100 steps have been 
generated with the variable intersegmental energy simulating coils in solvents of various thermodynamical 
quality. The coefficient K decreases rapidly from 1 in large pores to negligible values at 2 over 0.8, where 2 is 
the ratio of the characteristic dimensions of the coil and pore. The partition curve is only slightly affected 
by solvent quality. The marked change of coil statistics with solvent is observed in the region of large 
confinement of coils by pores for 2 > 1. This does not seem to be properly reflected by the scaling theory. 
However, the local 'conformational' structure of chains is not influenced by pore constraints. Implications of 
results for the static and dynamic measurements of partition equilibrium and for transport properties of 
macromolecules in porous media are discussed. 
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I N T R O D U C T I O N  dependence of K on 2, the ratio of characteristic 
dimensions of coil and pore, has also been deduced in a 

Equilibrium partitioning of flexible molecules between slightly different form from a bead-spring dumbbell model 
bulk phase and microporous material is important in of chains distributed into pores 4. The statistics of a 
numerous separation techniques such as gel macromolecule in solution trapped in small pores were 
such as ultrafiltration. The prefix 'micro' refers to a pore addressed qualitatively by the scaling theory 5. The 
such as ultrafilatration. The prefix 'micro' refers to a pore sensitivity of function K versus  2 to the solvent remains an 
whose characteristic linear dimension is comparable to important unresolved question. The analytical solutions 
that of the partitioning species. The partition coefficient for the partition coefficient by the random-flight model 
K is defined as the ratio of the average concentration 
inside the pore to the concentration of the bulk phase in correspond to the partition equilibrium at the theta state. 
equilibrium with it. At a very low concentration of solute, However, most partition measurements are performed in 

thermodynamically good solvents where coils are 
only the interactions between the pore and single, isolated expanded relative to the theta state due to the excluded 
particles are relevant. In a simple steric model, the pore volume. 
walls behave as hard walls and geometrical hindrances of 
a particle in a small pore suffice to explain the partitioning Monte Carlo (MC) simulations on a lattice represent 

an attractive alternative to the evaluation of the partition 
effect. The inclusion of the attractive (adsorption) action coefficient K of flexible chains. The statistics of chains 
of the pore walls or long-range repulsion is the next level confined in a boundary of simple geometry make it 
of complication in the analysis of partitioning, possible to evaluate the effect of size and shape of pore on 

The description of the steric partitioning focused K and to compare the results with the analytical 
primarily on the dependence of the partition coefficient K solutions. The simulations with the variable intra- 
on size and shape of solute and pore. Simple analytical molecular excluded volume (coil swelling) enable us to 
expressions of solutes modelled as hard spheres in pores 
of regular shape 1 apply to the coefficient K. Steric estimate how solvent quality modifies the function of K 

versus  2. Moreover, the configurational properties of 
partition is a result of the existence of excluded volume chains at the strong pore confinement, i.e. in pores smaller 
adjacent to the pore walls that is not accessible to the than the size of the coil, can be evaluated by simulations. 
centre of the particles due to their finite size. Partition of In the present paper, this approach is illustrated by a 
rigid particles of various shapes inside pores of single and cubic lattice simulation of partitioning of a flexible chain 
distributed sizes has been studied in great detail by 
Giddings et  al. 2. into a cubic pore of variable size. The coefficient K has 

been calculated for solutions with coils in the range from 
The rationalization of partitioning of flexible polymer- 

chain solutes is much less straightforward. Casassa a the expanded to the collapsed state. The effect of pore 
confinement on thermodynamic functions of chains and 

derived the expressions for K by solving the differential 
equation for a probability of a random flight restricted by on the lattice-step orientation ('conformational' 

population) has been evaluated. Preliminary results of 
cavities of simple geometrical shape (sphere, slit, simulations and their application to the prediction of 
cylinder). The crucial result of the analysis, the solute rejection on microporous membrane at 

* To whom correspondence should be addressed, ultrafiltration have already been reported 6. 
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Table 1 Reduced intersegmental energy F, radius of gyration Rg and compact  configurations termed as collapsed coil or 
square of expansion coefficient ~t of 100-segment coils simulated in the globule. MC simulations in an athermal system where 
various states F = 0 result in coil dimensions slightly expanded relative 
State F Rg ~2 to the theta dimensions. At negative values of the 

parameter  F, the chain expansion is enhanced by 
Expanded -1.0 7.11 1 .70  intersegmental repulsion. Variation of the intrachain 
Athermal 0.0 6.43 1.39 
Theta 0.26 5.46 1 .00  excluded volume given by the parameter  F at simulation 
Collapsed 0.5 3.63 0.44 can be used to estimate indirectly how the partitioning 

into pores would be influenced by changes of the coil size 
due to variable solvent quality. 

C O M P U T A T I O N A L  T E C H N I Q U E  Variation of chain confinement with the pore size 

Polymer chains comprising 100 segments were generated The effect of the pore size on the partition function of a 
on a simple cubic lattice in a cubic pore of variable chain in the expanded, athermal, theta and collapsed 
dimension L using the procedure of Rosenbluth- states is shown in Figure I. The partition function Q refers 
Rosenbluth described in detail by McCrackin et al. 7. In to one segment and is reduced by the number  of the 
this method, the chains are constructed by adding unrestricted lattice random walks, i.e. by the factor 
segments with a step-by-step procedure based on Z(Z - 1) N- 1 for an N segment chain on the lattice with 
scanning in each step for allowed continuations. The first the coordination number  Z. The intrachain energy 
segment is placed at random into an empty pore. In each parameter  F affects considerably both the absolute value 
of the next steps the continuation is selected at random of the partition function and its dependence on pore size. 
avoiding the previously occupied sites. Since the number  The partition function of free chains (for L ~ ~ )  reaches 
of allowed possibilities is known for each step they can be a maximum value for a collapsed coil characterized by an 
multiplied to obtain the weight Wk of the kth walk. The enhanced probability of segmental contacts. The 
estimate of the partition function of a single chain from a difference between the present self-avoiding chain 
sample of m walks is simulation and a random walk is properly reflected in a Qf 

value less than unity for the theta chain. 1 m 

Q* = ~ Wk exp(PkF) (1) The influence of the reduced intersegmental energy on 
m k = 1 the partition function of a coil confined in a pore, Qcf, 

where Pk is the number of contacts in the kth chain becomes even more pronounced (see Figure I). The 
formed by the unbonded segments separated by one marked decrease of Qcf occurs in the region where the 
lattice distance. Interaction between these segments is chain diameter 2Rg exceeds the pore dimension L. For  a 
given by F =  -E/kaT, where e is the attractive energy given size of pore the Qcf values diminish with the coil 
between unbonded segments, kB is the Boltzmann expansion. Thus, two parts on curves in Figure 1 can be 
constant and T is temperature. The chain contacts with distinguished. The first part,  the region of large pores with 
the pore walls were not included in Pk because reflecting, the coil diameter smaller than the pore dimension L, is 
but otherwise inert, walls were assumed. .,---- L 

The partition coefficient K was calculated as the ratio 65 40 25 15 10 8 
I~ $ I I I I [ ! 

K = Qce/Qf , where Q* and Q~' are the partition functions 
of the chain confined in a pore and the free chain outside - - "~+" "+- -"  ~ ' ~  5 -++_+_, ~ 
the pore in bulk solution, respectively. Radius of gyration 
of the chain Rg= (s2)  ~/2 was calculated in an analogous 1.0 . _ 
way by the thermodynamic averaging of the self-avoiding - - 
random walks. The expansion coefficient ~2= ( s2 ) / ( s  2) . . . . . . . .  _ + ~ * ~ . . . ~  + ~ ~ .  - -  
is defined relative to t he nape rturbed dimensions in the ~ ~ ' ~ ~ x  
theta state. Pore size and radius of gyration are expressed 

0 . 2 6  in units of the basic lattice modulus. Results for chains in 0.8 
bulk solvent (L ~ ~ )  were obtained by placing the first ~ ~ ~ x ~  
monomer  of the chain into the middle of a sufficiently 
large pore. According to statistics up to 30000 ~ ~ 0 . 0  
configurations were generated to obtain reliable mean \ 
values of K and Rg. 0.6 

RESULTS AND D I S C U S S I O N  N - 1 . 0  

The confinement of macromolecules by a cubic pore and 
their partitioning was examined for several representative 
strengths of the intrachain excluded volume specified by 0.4 

I I I I I I I 
the reduced intersegmental energy F (Table 1). On a cubic 0 0.0, 0.0s 0.12 
lattice, the 'pseudo-ideal '  chains with the dimensions 1/L 
corresponding to the theta state are generated when F 
equals 0.26 for a 100 segment chain s, i.e. when a slight Figure 1 The plot of reduced partition function Qcf expressed per 

segment versus the reciprocal of pore dimension L for coils of various 
attraction of segments is assumed to balance the reduced intersegmental energy F: (0.5) collapsed; (0.26) theta; (0.0) 
intrachain volume exclusion. An additional increase of athermal; and expanded ( - 0.5 and - 1.0) coils. Arrows indicate the coil 
attraction to F of about  0.5 leads to the preference of diameter 2Rg 
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1 . 0 [ ~  allowed in the presence of boundary, i.e. that do not 
intersect it. For  a spherical cavity it is given as a 

K =  (6/• 2) ~ m -2 exp(-m2n222) (2) 
m = l  

This function is plotted in Figure 2 as a dashed line. 
0.s A small difference in the function K versus 2 between 

x ' = ~ .  the theory of Casassa and MC simulations in Figure 2 
may be connected with the pore shape assumed in these 

\ ~ ' \ ~ . _ ,  treatments, which was sphere and cube respectively. 
~ ' ~ ~ "  " - However, a more fundamental difference between these 

0 ~ , -  - "  t ~ ~ -  - two approaches derives from the fact that an analytical 
0.2 0.4 0.6 0.8 solution applies for the random-flight chains 

x corresponding to the theta state and the coefficient K is 

Figare 2 Variation of the partition coefficient K with 2 = Rg/ap. Some determined by the entropic change only. In contrast, MC 
results of the simulation are represented as: (+) theta chain; F = 0.26, a simulations provide a possibility to model the real chains 
full line; ([]) collapsed chain, F=0.5; (O) expanded chain, F= -0.5. with the nonzero intrachain excluded volume. In such a 
Dashed curve corresponds to equation (2) of Casassa 3, dotted curve is way the energy term is incorporated into the coefficient K 
hard sphere relation K = (1- 2) 3 and into AF °, standard free energy of transfer of one mol 

of chains from the bulk solution to the interior of the pore. typical for the partitioning of coils into pores. 
Computations in this region require a generation of a Finally, Figure 2 shows the partition coefficient K 
large number of configurations and a considerable calculated for hard spheres with radius Rg enclosed in a 
expenditure of computing time. In the simulation of the spherical cavity of radius ap by the relation K = ( 1 -  2) 3 
expanded coil, F = - 0 . 5  has been chosen for this region. (ref. 1). The hard sphere function is surprisingly similar to 
In the second portion of the curves in Figure 1, in the zone the curve from the MC simulation of the theta chains. 
of small pores, a dramatic reduction of the number of An important conclusion can be drawn from Figure 2 
chain configurations takes place. All the curves in Figure on the effect of the solvent modelled through reduced 
1 show a smooth convergence of the Qcf values to the intrachain energy F. In contrast to Figure I,  a difference 
partition function Qf of free chains, in thermodynamic quality between a good solvent with 

At first glance the effect of pore confinement on the ~ > 1 and theta solvent does not play any significant role 
partition function Q~f in the region of partitioning where in the dependence of the coefficient K on 2. This effect 
L > 2Rg might seem surprisingly small. However, it could have some importance for 2 higher than about 0.6 
should be realized that in the computation of the partition but in this region the absolute value of K is already very 
coefficient of a whole chain by the expression K = (Qcf/ small. Hence, MC simulation seems to substantiate the 
Qf)U, minor variations in the ratio of the partition procedure already frequently used in practice that the 
functions with L after raising to the Nth power become relations of Casassa 3 for spherical and other idealized 

pores can also apply in good approximation to other sufficient to change K in the full range from unity to zero, 
i.e. from total to no partitioning into pores .Figure I could solvents than the theta solvent. 
be replotted to show the dependence of the coefficient K 
on the reciprocal pore dimensions L-1 where all curves Comparison with a scaling approach 
would coincide at K =  1 for infinitely large pores. All of the thermodynamic parameters deducible from 
Traditionally, however, instead of that function, a plot K the partition function Qcf become sensitive to the 
versus 2 is used in the representation of the steric parameter F and to the solvent quality when pore and coil 
partitioning, where 2=  Rg/ap and ap is an effective pore dimensions are comparable. In this region, the behaviour 
dimension; L/2 in our case. This function is shown in of flexible chains dissolved in a good solvent and confined 
Figure 2 with points from some simulations for the in pores was treated theoretically by the scaling method 5. 
expanded, theta and collapsed chains. The unbroken line Repulsive interactions between monomers in a good 
in Figure 2 describes the data for the theta chain rather solvent are taken into account in this approach and 
well. The scatter of points for the expanded and collapsed scaling law is predicted for the partition coefficient of an 
coil is slightly larger. However, the points for the N-segment chain into slit pores in diluted solutions: 
expanded coil seem to be distributed roughly around the K = fl exp( - N/LO (3) 
theta chain curve, whereas the points for the collapsed 
chain lie below this curve. The coefficient K becomes The exponent p should be 2 and 5/3 for the theta and good 
negligible for 2 larger than about 0.8, i.e. far below 2 = 1 solvent, respectively, and the prefactor fl cannot be 
when the coil size matches the pore dimension, deduced from scaling arguments. 

We have used the results of MC simulations to test the 
Comparison with analytical theories scaling theory predictions. The double logarithmic plot of 

The prediction of the coefficient K from MC the relation in equation (3) for the theta, athermal and 
calculations is compared in Figure 2 with the analytical good solvents is shown in Figure 3. Apparently, the 
theory of steric exclusion of flexible coils 3. Casassa scaling law, equation (3) is obeyed in the narrow range of 
derived the dependence of K on 2 by the calculation of comparable dimensions of coils and pores around 2 = 1. 
distribution coefficients for random flight chains in However, for a stronger pore confinement, when the 
cavities of simple geometrical forms. The coefficient K is chain diameter is much higher than the pore dimension L 
determined by the fraction of unrestricted random-flight and also for very large pores, the exponential factor in the 
configurations starting in the space within a cavity that is scaling relation equation (3) is no longer dominant. The 
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L ) Distribution of chain conformations 
8 10 15 20 30 Variation of the reduced intersegmental energy F may 

q w I I I ! 
o influence not only the overall configurational properties 

of a coil such as radius of gyration R~ or the expansion 
+ coefficient ct but also a local orientation of individual 

o lattice steps. Such 'conformational '  statistics on the lattice 
should obviously differ from the similar statistics in real 

• polymers but the comparison could be instructive. We 
3 divided the mutual orientation of three subsequent steps 

on a simple cubic lattice into four groups (Figure 4). Three 
steps in one direction define a linear (L) conformation. A 
'square'  planar structure is denoted as cis (C). All other 

~ planar conformations with side steps represent trans (T) 
= conformations. Finally, a conformation with the last step 
' -  2 in the direction perpendicularly to the plane of the first 
-~ two steps is denoted as gauche (G). Populations of the 

above groups of conformations are shown in Figure 4 as a 
function of pore dimension L for the theta and expanded 
coils. 

Inspection of Figure 4 reveals that conformational 
populations are only slightly affected by pore 

1 confinement even in the region where coil diameter 2Rg 
exceeds the pore dimension L. This curious behaviour can 

• be rationalized when one realizes that chain encounter 
with a cavity boundary can be avoided by a change of 

• orientation of only a one of 100 segments, located for 
example in the middle of the chain. In other words, a 1 ~o 

0 I I change of populations Pi due to a suitable single bond 2. 2.5 3.0 3. 
In L 'conformational '  transition can prevent the contact of a 

chain with a pore wall. Figure 4 also suggests a minor 
Figure 3 Double logarithmic plot of the scaling relation between K influence of solvent on conformational preferences. The 
and L, equation (3): (O) for theta chains, F=0.26;  ( + )  for athermal 
chains, F = 0.0; (O) for expanded chains, F = - 1.0; arrows indicate the population of a t rans  conformation in an expanded coil is 
coil diameter 2Rg enhanced relative to the theta system and this increase is 

compensated by a reduction of gauche and cis 
prefactor fl also depends on L, which results in the conformations. Pore constrictions on the length of some 
deviation of the plots in Figure 3 from straight lines in the conformational sequences can also be evaluated. For  
regions mentioned, example, the distribution curve for the length of either 

The exponent p from the straight line region of the 
function plotted in Figure 3 is about  2.0, 2.2 and 2.5, 
respectively, for theta, athermal and good solvents. = = = , L ~ C 
Although the first figure is in full accord with the scaling 
theory, the increase of the exponent with solvent quality is ~ + ~ - ~  r ~b ¢* c 
contrary to scaling predictions. The dependence of the 
coefficient K o n  L 2 for random flight coils is corroborated 0.6 

4- 4- ÷ by the analysis 9 of Casassa's relation, equation (2). The + + 4- 4- + 
second term in the series is less than 0.001 of the first as PT 
soon as L is less than 6Rg and becomes negligibly small for o o o o o 

L values less than coil diameter 2Rg. Because the partition 
coefficient K in random-walk statistics is given only by _ 0.4 
the configurational entropy difference, AS °, between free ~" 

o o o ~ + chains outside the cavity and confined chains, equation o + + PG 

(2) implies that AS ° is proportional  to L 2 in the theta + + + + 

system. Such a dependence of the entropy AS ° was 
confirmed by MC simulations on a body-centred cubic 
lattice for 1000-segment chains enclosed by a sphere 9. In a 0.2 o 
related simulation with the different type of chain o o o o 

confinement by two parallel plates, Ishinabe 1° found the + + 4- + * ÷ + Pc + 
exponent p to be between 1.8 and 2.1 for the athermal + + + 

system in the intermediate range of the chain ~ 4- ~ o ~ ~i PL 
! I I confinement. In the analysis of equation (3) and Figure 3 0 10 15 20 

one should keep in mind that absolute values of the L 

partition coefficient K to which these functions apply are 
Figure 4 Schematic illustration of linear (L), trans (T), cis (C) and 

extremely low. For  example, a typical value o f  K gauche (G) lattice conformations and their probability Pi in a chain as a 
corresponding to the middle of ordinate in Figure 3 is function of pore dimension L for the theta coil: (O) F=0.26  and for 
about  10 -4. expanded coil: (+ )  F = -  1.0 
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trans or linear steps in the theta system suggests that the First, there is a partitioning of the solute at the end of the 
two step sequence is the most frequent. A probability of pore and second, pore walls increase the viscous drag on 
longer sequences is gradually reduced and is less than 1% a solute molecule as it moves through the liquid within the 
for ten step sequences and longer. The pore confinement pore with the intrapore diffusion coefficient Dp. The 
brings about only a lesser broadening of this distribution effective diffusion coefficient in the pore is given by the 
curve, product De~= KDp. The coefficient D~r is usually smaller 

To date, no information is available on the than the corresponding value in bulk solution D. Our 
conformational preferences of a real polymer trapped into calculations may help to establish the dependence of De~/ 
micropores. In contrast to the results of lattice D on 2 for slit-like pores analogous to already existing 
calculations in Figure 4, a negligible influence of the relations for cylindrical pores 15. Besides, since our results 
excluded volume on the single bond conformational in Figure 3 do not support the scaling theory predictions 
populations Pi is commonly assumed for real polymers, concerning the pore size exponent p in good solvent, it 
For  example, in a treatment of long range interactions in seems that some reservation should be raised to analysis 
polyethylene 11, the probability of trans bonds was kept of the restricted diffusion using equation (3) recently made 
constant (over 60 %) and the coil expansion by a good for a dilute solution of polystyrene 17. 
solvent was achieved by a marked enhancement of the In ultrafiltration, porous membranes selectively reject 
length of trans bond sequences, solute molecules from a solution. This rejection is 
Implications for  processes in porous media characterized by a reflection coefficient a defined as the 

fraction of macromolecules held back by the membrane. 
In a more general part of the discussions we will focus The value of tr, between 0 and 1, depends on the 

our attention on the results for large pores and the interaction between the solute and membrane matrix. 
coefficient K. MC simulations are a versatile tool for the The coefficient a is related to the partition coefficient K in 
study of the partitioning equilibrium. They can be used to 
establish new relationships of K versus 2, in addition to the a very good approximation by the expression 16. 

already existing analytical functions, for chains of various a ~ (1 - K) 2 (4) 

sizes and flexibilities and for an arbitrary size and shape of This relation, based on the rigid solutes theory, was 

pore. established for different sizes and shapes of both solute 
CONCLUSIONS and pore and is supported by some experimental data. 

The partition curve from MC simulation in Figure 2 has 
In this paper we concentrated on the unresolved problem been converted using equation (4) to a plot of coefficient tr 
of the solvent influence on the relation between K and 2. versus 2 in slit-like pores 6. The membrane rejection was 
For  cubic pores, our results on a simple cubic lattice do predicted to rise rapidly and the rejection was almost 
not show any significant effect of the thermodynamic complete at 2 over 0.7. Again, the coefficient should 
quality of the solvent on partition. Provided this finding be insensitive to the solvent used in ultrafiltration. 
could be generalized to other pore shapes, it would However, the predictions of a for flexible coils based 
support the universality of the K versus 2 plot regardless of on equation (4) are apparently applicable only to 
the type of solvent. That  would be very fortunate, because ultrafiltration at the weak flow condition. At a higher flow 
in practice mainly good solvents are used in partition velocity, the deformation of coils in the solvent gradient 
measurements for solubility reasons, may take place 16. As a consequence, the chains originally 

The possibility of agreement between the results of unable to enter the pore due to their size, can pass 
calculations in Figure 2 (either from MC simulation or through a pore after their elongation. Then, coefficient a 
from analytical theory) with experimental data from is also a function of solvent flow rate and undeformed 
static or dynamic (gel chromatography) measurements chain characteristics, such as R~, cannot be used in the 
should be viewed with scepticism 12. An incomplete correlation of tr with the ratio 4. 
representation of real polymers by lattice simulations, 
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